1) v=u+gt = -5 +10*2=15 m/s
2) r=ut+gt^2/2=-5*2+10*2^2/2=-10+20=10m
3) r of heli= vt =5*2=10m
So 10m by bag from answer number 2 plus additional 10m by helicopter equals 20m
Answer:

Explanation:
Given data:
Rotating cylinder length = 9 mi
diameter of cylinder is 5.9 mi
we know that linear acceleration is given as
a = r ω^2
where ω is angular velocity
so



I don’t know what’s up with chin man ??
Answer:
(a) 2.5 m/s
(b) 37.5 KJ
Explanation:
(a)
From the law of conservation of momentum, Initial momentum=Final momentum

and making
the subject then
and since
is initial velocity of car, value given as 4 m/s,
is the initial velocity of the three cars stuck together, value given as 2 m/s and
is the final velocity which is unknown. By substitution

(b)
Initial kinetic energy is given by

Final kinetic energy is given by

The energy lost is given by subtracting the final kinetic energy from the initial kinetic energy hence
Energy lost=350-312.5=37.5 KJ
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.