An object is lifted from the surface of a spherical planet to an altitude equal to the radius of the planet.
As a result, the object's <em>mass remains the same</em>, and its <em>weight decreases</em> to 1/4 of whatever it is when the object is on the planet's surface.
Answer:
The electric field is 
Explanation:
Given that,
Radius = 2.00 cm
Number of turns per unit length 
Current 
We need to calculate the induced emf

Where, n = number of turns per unit length
A = area of cross section
=rate of current
Formula of electric field is defined as,

Where, r = radius
Put the value of emf in equation (I)
....(II)
We need to calculate the rate of current
....(III)
On differentiating equation (III)

Now, put the value of rate of current in equation (II)


Hence, The electric field is 
Answer:
2,38kg
Explanation:
Mass in function of time can be found by the formula:
, where
is the initial mass, t is the time and k is a constant.
Given that a sample decay 1% per day, that means that after first day you have 99% of mass.
, but
, so we have
, then 
Now using k found we must to find
.
