Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Explanation:
It is given that,
An electron is released from rest in a weak electric field of, 
Vertical distance covered, 
We need to find the speed of the electron. Let its speed is v. Using third equation of motion as :

.............(1)
Electric force is
and force of gravity is
. As both forces are acting in downward direction. So, total force is:



Acceleration of the electron, 


Put the value of a in equation (1) as :


v = 0.010 m/s
So, the speed of the electron is 0.010 m/s. Hence, this is the required solution.
There are different forces acting on an object like nuclear force , gravitational force...plus external forces like friction and other..
net sum of all these is resultnat
Answer:

Explanation:
Given:
angular speed of rotation of friction-less platform, 
moment of inertia with extended weight, 
moment of inertia with contracted weight, 
<u>Now we use the law of conservation of angular momentum:</u>



The angular speed becomes faster as the mass is contracted radially near to the axis of rotation.
If the net force is 4 N, and Frankie is pulling the rope with 7 N, Carol must be pulling the rope with 11 N (I think that Carol is going to win the tug-of-war...).