<span>carrying twice the weight and climbing twice as high</span>
Answer:
car B will be 30 Km ahead of car A.
Explanation:
We'll begin by calculating the distance travelled by each car. This is illustrated below:
For car A:
Speed = 40 km/h
Time = 3 hours
Distance =?
Speed = distance / time
40 = distance / 3
Cross multiply
Distance = 40 × 3
Distance = 120 Km
For car B:
Speed = 50 km/h
Time = 3 hours
Distance =?
Speed = distance / time
50 = distance / 3
Cross multiply
Distance = 50 × 3
Distance = 150 Km
Finally, we shall determine the distance between car B an car A. This can be obtained as follow:
Distance travelled by car B (D₆) = 150 Km
Distance travelled by car A (Dₐ) = 120 Km
Distance apart =?
Distance apart = D₆ – Dₐ
Distance apart = 150 – 120
Distance apart = 30 Km
Therefore, car B will be 30 Km ahead of car A.
Answer:
B. space quantization.
Explanation:
In 1921, Otto Stern developed the idea behind this experiment, while Walther Gerlach performed the actual experiment in 1922. The Ster-Gerlach experiment provides prove to the fact that the spatial orientation of angular momentum is quantized. To demonstrate the experiment, silver atoms were made to travel through a magnetic field path.
Before they hit the screen(usually a glass slide), they were deflected because of their non-zero magnetic moment. There was an expected result for this experiment, but the actual observation on the glass slide was a continuous distribution of the silver atoms that actually hit the glass. This experiment was useful in proving that in all atomic-scale systems, there was a quantization of angular momentum.