Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>
The Law of Conservation of Energy states that, in an isolated system, energy remains constant and can not be created or destroyed, only transferred from one form to another. This law was created by Julius Robert Mayer.
Answer:
Spring constant, k = 5483.11 N/m
Explanation:
It is given that,
Mass of the organ, m = 2 kg
The natural period of oscillation is, T = 0.12 s
Let k is the spring constant for the spring in the scientist's model. The period of oscillation is given by :



k = 5483.11 N/m
So, the spring constant for the spring in the scientist's model is 5483.11 N/m.
The direction of a vector multiplied by a scalar is only affected if the scalar is negative, in which case the vector will now be in the opposite direction. If the scalar is positive, the vector will only change in magnitude
With its apparent magnitude