Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
It is transferred by direct contact, say you touched it, you would feel the heat
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291