Answer:
1) evolution of gas
2) evolution of heat
Explanation:
In this reaction, glucose is broken down into its constituents; carbon dioxide and water. The question is to decipher indicators of a chemical reaction from the equation.
If we look at the equation carefully, we will notice that a gas was evolved (CO2). The evolution of a gas indicates that a chemical reaction must have taken place. Secondly, energy is given off as heat. This is another indication that a chemical reaction has taken place.
Answer:
B
Explanation:
B is the best showing of a chemical reaction out of the choices
Answer:
See explanation
Explanation:
The molecular equation shows all the compounds involved in the reaction.
The molecular equation is as follows;
2NaF(aq) + Pb(NO3)2(aq) -------> PbF2(s) + 2NaNO3(aq)
The complete ionic equation shows all the ions involved in the reaction
The complete ionic equation;
2Na^+(aq) + 2F^-(aq) + Pb^2+(aq) + 2NO3^-(aq) -------->PbF(s) + 2Na^+(aq) +2NO3^-(aq)
The net Ionic equation shows the ions that actually participated in the reaction
The net ionic equation is;
2F^-(aq) + Pb^2+(aq)--------> PbF(s)
The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Options are as follow,
1) Flashes
2) Skips
3) Stretches
<span>4) Jumps
</span>
Answer:
Option-3 (stretches) is the correct answer.
Explanation:
The best analogy which suits a chemical bond is the stretching of chemical bonds. Remaining verbs doesn't explain the property of chemical bond. For example, the chemical bonds did not flashes, neither they skip or jump.
The chemical bonds can stretch and bend. As predicted from IR spectroscopy, different bonds can stretch and bend at different energies. The stretching of bonds require more energy while, bending of bonds require less energy.