Answer:
The sample will be heated to 808.5 Kelvin
Explanation:
Step 1: Data given
Volume before heating = 2.00L
Temperature before heating = 35.0°C = 308 K
Volume after heating = 5.25 L
Pressure is constant
Step 2: Calculate temperature
V1 / T1 = V2 /T2
⇒ V1 = the initial volume = 2.00 L
⇒ T1 = the initial temperature = 308 K
⇒ V2 = the final volume = 5.25 L
⇒ T2 = The final temperature = TO BE DETERMINED
2.00L / 308.0 = 5.25L / T2
T2 = 5.25/(2.00/308.0)
T2 = 808.5 K
The sample will be heated to 808.5 Kelvin
Answer:
I don't fully understand what this is about...
Explanation:
sorry :(

<em>Chemists use the mole unit to represent 6.022 × 10 23 things, whether the things are atoms of elements or molecules of compounds. This number, called Avogadro's number, is important because this number of atoms or molecules has the same mass in grams as one atom or molecule has in atomic mass units. </em>
hope helpful~
Answer: The final volume of this solution is 0.204 L.
Explanation:
Given: Molarity of solution = 2.2 M
Moles of solute = 0.45 mol
Molarity is the number of moles of solute present divided by volume in liters.

Substitute the values into above formula as follows.

Thus, we can conclude that the final volume of this solution is 0.204 L.
A.) a rotation is the earth "rotating" on its axis while a revolution is the earth "revolving" around the sun so 1 rotation is from sun rise to sun rise while one revolution is from January 1st to the next January 1st