Sound waves need to travel through a medium such as a solid, liquid, or gas. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly as solids. And gases are very loosely packed. The spacing of the molecules enables sound to travel much faster through a solid than a gas. Sound travels about four times faster and farther in water than it does in air. This is why whales can communicate over huge distances in the oceans. Sound waves travel about thirteen times faster in wood than air. They also travel faster on hotter days as the molecules bump into each other more often than when it is cold.
Answer:
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g)
Explanation:
Which ONE of the following is an oxidation–reduction reaction?
A) PbCO₃(s) + 2 HNO₃(aq) ⇒ Pb(NO₃)₂(aq) + CO₂(g) + H₂O(l). NO. All the elements keep the same oxidation numbers.
B) Na₂O(s) + H₂O(l) ⇒ 2 NaOH(aq). NO. All the elements keep the same oxidation numbers.
C) SO₃(g) + H₂O(l) ⇒ H₂SO₄(aq). NO. All the elements keep the same oxidation numbers.
D) CO₂(g) + H₂O(l) ⇒ H₂CO₃(aq). NO. All the elements keep the same oxidation numbers.
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g). YES. <u>C is reduced</u> and <u>H is oxidized</u>.
Answer:
- 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Explanation:
<em>Photosynthesis</em> is the chemical process carried out by plants for the conversion of inorganic matter (carbon dioxide and water) into organic matter (glucose) with the release of oxygen, using light (sun energy).
So the chemical process may be represented by:
carbon dioxide + water + sun energy → glucose + oxygen
- <u>Skeleton equation:</u>
CO₂ + H₂O + sun energy → C₆H₁₂O₆ + O₂
- <u>Balanced chemical equation:</u>
6CO₂ + 6H₂O + sun energy → C₆H₁₂O₆ + 6O₂
- <u>Supressing the energy to show only the chemical compounds:</u>
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
They move fast enough to overcome the forces of attraction that hold them together, becoming a gas.
ITS THAT :)
there's no question on here