Answer:
W, because that's the highest point
Explanation:
Ok so the answer will be 1.39km.
First use SOH-CAH-TOA
Sine (SOH)=Opp/Hyp
Sin (8°) = vertical height/hypotenuse
Hypotenuse = 10 km
Vertical height =?
vertical height = sin (8°) × 10km = 1.39 Km
I hope this helps. :3
Explanation:
a) Given in the y direction (taking down to be positive):
Δy = 50 m
v₀ = 0 m/s
a = 10 m/s²
Find: t
Δy = v₀ t + ½ at²
50 m = (0 m/s) t + ½ (10 m/s²) t²
t = 3.2 s
b) Given in the x direction:
v₀ = 12 m/s
a = 0 m/s²
t = 3.2 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (12 m/s) (3.2 s) + ½ (0 m/s²) (3.2 s)²
Δx = 38 m
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
FEMA stands for <span>Federal Emergency Management Agency</span>