1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
13

What is the purpose of the wire coil in an electromagnet?

Physics
1 answer:
ziro4ka [17]3 years ago
3 0
It is to conduct electricity in the magnet so it has an electric field.

Please BRAINLIEST!
You might be interested in
A permeability test was run on a compacted sample of dirty sandy gravel. The sample was 175 mm long and the diameter of the mold
LUCKY_DIMON [66]

Answer:

(a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

Explanation:

Given that,

Length = 175 mm

Diameter = 175 mm

Time = 90 sec

Volume= 405 cm³

We need to calculate the discharge

Using formula of discharge

Q=\dfrac{V}{t}

Put the value into the formula

Q=\dfrac{405}{90}

Q=4.5\ cm^3/s

(a). We need to calculate the coefficient of permeability

Using formula of coefficient of permeability

Q=kiA

k=\dfrac{Q}{iA}

k=\dfrac{Ql}{Ah}

Where, Q=discharge

l = length

A = cross section area

h=constant head causing flow

Put the value into the formula

k=\dfrac{4.5\times175\times10^{-1}}{\dfrac{\pi(175\times10^{-1})^2}{4}\times38}

k=8.6\times10^{-3}\ cm/s

The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(c). We need to calculate the discharge velocity during the test

Using formula of discharge velocity

v=ki

v=\dfrac{kh}{l}

Put the value into the formula

v=\dfrac{8.6\times10^{-3}\times38}{17.5}

v=0.0187\ cm/s

The discharge velocity during the test is 0.0187 cm/s.

(b). We need to calculate the volume of solid in the ample

Using formula of volume

V_{s}=\dfrac{M_{s}}{V_{s}}

Put the value into the formula

V_{s}=\dfrac{4950\times10^{-3}}{2710}

V_{s}=1826.56\ cm^3

We need to calculate the volume of the soil specimen

Using formula of volume

V=A\times L

Put the value into the formula

V=\dfrac{\pi(17.5)^2}{4}\times17.5

V=4209.24\ cm^3

We need to calculate the volume of the voids

V_{v}=V-V_{s}

Put the value into the formula

V_{v}=4209.24-1826.56

V_{v}=2382.68\ cm^3

We need to calculate the seepage velocity

Using formula of velocity

Av=A_{v}v_{s}

v_{s}=\dfrac{Av}{A_{v}}

v_{s}=\dfrac{V}{V_{v}}\times v

Put the value into the formula

v_{s}=\dfrac{4209.24}{2382.68}\times0.0187

v_{s}=0.0330\ cm/s

The seepage velocity is 0.0330 cm/s.

Hence, (a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

8 0
4 years ago
State an advantage of using such hydraulic jack to lift a load ​
expeople1 [14]

Answer:

Explanation:

You are going to lift and press down on the 200 N many times and move only a short distance. The reward is that slowly but surely you will lift a very heavy load -- one that cannot be managed any other way but by the hydraulic jack.

5 0
3 years ago
What is the cause of atmospheric pressure.​
marusya05 [52]

Explanation:

hope it's help you ok have a good day

6 0
3 years ago
A 40kg rock falls off a cliff that is 50 meters high. How fast is the speed of the rock when it hits the ground
Oksi-84 [34.3K]

31.3m/s

Explanation:

Given parameters:

Mass of rock = 40kg

Height of cliff = 50m

Unknown:

Speed of rock when it hits ground = ?

Solution:

We are going to use the appropriate motion equation to solve this problem

The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.

  Using;

                      V²  = U² + 2gH

V = unknown velocity

U = initial velocity = O

g = acceleration due to gravity = 9.8m/s²

H = height of fall

since the initial velocity of the bodyg is 0

     V²  = 2gH

    V= √2gH = √2 x 9.8 x 50 = 31.3m/s

learn more:

Velocity brainly.com/question/4460262

#learnwithBrainly

7 0
4 years ago
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
Other questions:
  • A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \
    9·1 answer
  • Corita bounced a ball four times. She measured how high the ball bounced each time. She recorded her data in the table. Which bo
    9·2 answers
  • A 0.09-kg lead bullet traveling 182 m/s strikes an armor plate and comes to a stop. If all of the bullet's energy is converted t
    7·1 answer
  • If the pressure acting on a given sample of an ideal gas at constant temperature is tripled, what happens to the volume of the g
    5·1 answer
  • What is the longest wavelength of radiation that possesses the necessary energy to break the o-o bond?
    10·1 answer
  • Find the color of light whose photon has 4.75x10^-19 J of energy
    10·1 answer
  • You are helping your friend move a new refrigerator into his kitchen. You apply a horizontal force of 275 N in the positive x di
    12·1 answer
  • Two particles, an electron and a proton, are initially at rest in a uniform electric field of magnitude 570 N/C. If the particle
    10·1 answer
  • 15 PNTS
    11·2 answers
  • the most likely places where stars and planetary systems are forming in the universe are- the most likely places where stars and
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!