1) Nuclear reactions involve a change in an atom's nucleus, usually producing a different element. Chemical reactions, on the other hand, involve only a rearrangement of electrons and do not involve changes in the nuclei. ... (3) Rates of chemical reactions are influenced by temperature and catalysts.
Answer:

Explanation:
We are given the mass of two reactants, so this is a limiting reactant problem.
We know that we will need mases, moles, and molar masses, so, let's assemble all the data in one place, with molar masses above the formulas and masses below them.
M_r: 17.03 32.00 18.02
4NH₃ + 5O₂ ⟶ 4NO + 6H₂O
m/g: 70.1 70.1
Step 1. Calculate the moles of each reactant

Step 2. Identify the limiting reactant
Calculate the moles of H₂O we can obtain from each reactant.
From NH₃:
The molar ratio of H₂O:NH₃ is 6:4.

From O₂:
The molar ratio of H₂O:O₂ is 6:5.

O₂ is the limiting reactant because it gives the smaller amount of H₂O.
Step 3. Calculate the theoretical yield.

Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
A habitat because it has animals and trees