Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Answer:
The volume will be "2.95 L".
Explanation:
Given:
n = 0.104
p = 0.91 atm
T = 314 K
Now,
The Volume (V) will be:
= 
By putting the values, we get
= 
= 
= 
Remember that a conjugate acid-base pair will differ only by one proton.
None of the options you listed are conjugate acid-base pairs as none of them differ only by one proton (or H⁺)
An example of a conjugate acid-base pair would be NH₃ and NH₄⁺NH₃ + H₂O --> NH₄⁺ + OH⁻NH3 is the base, and NH₄⁺ is the conjugate acid
I believe the answer is A. <span>make a softer sound because the shark will not hear the softer signal.
</span><span>
I say this becasue "</span><span>Some of the sounds dolphins make are outside the range of human hearing." So that means the the dolphins speak at a higher wavelength then us humans and we can't hear it so they could use that to their advantage and speak at a height wavelength to each other when sharks are near.
I could be wrong, but I think the answer is A. </span>