Newton's 2nd law of motion:
F = ma
F is force, m is mass, and a is acceleration.
Answer:

Explanation:
Let assume that pole vaulter begins running at a height of zero. The pole vaulter is modelled after the Principle of Energy Conservation:


The expression is simplified and final height is cleared within the equation:


![h_{B} = \frac{[(11\,\frac{m}{s} )^{2}-(1.3\,\frac{m}{s} )^{2}]}{2\cdot (9.807\,\frac{m}{s^{2}} )}](https://tex.z-dn.net/?f=h_%7BB%7D%20%3D%20%5Cfrac%7B%5B%2811%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%281.3%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D%7D%7B2%5Ccdot%20%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%7D)

Answer:
1/9 of that just outside the smaller sphere
Explanation:
The electric field strength produced by a charged sphere outside the sphere itself is equal to that produced by a single point charge:

where
k is the Coulomb's constant
Q is the charge on the sphere
r is the distance from the centre of the sphere
Calling R the radius of the first sphere, the electric field just outide the surface of the first sphere is

The second sphere has a radius which is 3 times that of the smaller sphere:

So, the electric field just outside the second sphere is

So, the correct answer is 1/9.
Answer:
Option (c)
Explanation:
Both the bullets have same acceleration because they both falls under the influence of acceleration due to gravity.
The bullet which is fired from the gun has some initial velocity but the bullet which is dropped has zero initial velocity.
the acceleration is acting on both the bullets which is equal to the acceleration due to gravity and they both in motion in the influence of gravity.