Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
Answer:
Valence electrons are outer shell electrons with an atom and can participate in the formation of chemical bonds. In single covalent bonds, typically both atoms in the bond contribute one valence electron in order to form a shared pair. The ground state of an atom is the lowest energy state of the atom.
In exothermic reactions, heat and light are released to the surrounding environment. On the other hand, in an endothermic reaction, heat is required and therefore it can be considered as a reactant.
- In exothermic reactions, light and heat are released into the environment (Option D).
- Exothermic reactions release energy in the form of heat or light.
- Combustion reactions are generally exothermic reactions.
- After an exothermic reaction takes place it is possible to observe that the energy of the products of the reaction is lesser than the energy of the reactants.
- The energy released in exothermic reactions is evidenced by the increase in temperature of the reaction.
Learn more in:
Answer:
1.05m or 105cm
Explanation:
Using the hooke's law equation as follows;
F = –k.x
Where;
F = force (N)
x = extension length (m)
k = constant of proportionality (N/m)
According to the information given in this question;
Displacement (x) = 85cm = 85/100 = 0.85m
Force = 12500N
Using F = kx, we find the proportionality constant
k = F/x
K = 12500/0.85
K = 14705.8N/m.
Also, since K = 14705.8N/m, the displacement (x), when the force increases to 15500N is;
F = kx
x = F/k
x = 15500/14705.8
x = 1.05m or 105cm
Answer:
Energy
A wave is a disturbance that carries energy from one place to another through matter and space.
Explanation:
A wave can be defined as a form of disturbance that carries energy from one place to another through matter and space.
The energy of wave depends on the frequency of the wave and the wavelength (lambda) of that particular wave.
Mathematically,
V = f × lambda