<span>D) The sun's rays will never be directly overhead. The latitude of 23 ½ degrees north is known as the Tropic of Cancer. Above this imaginary line the sun's rays hit earth with decreased angles.</span>
#A for plato users, i took the test and got 100!!
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>
Answer:
the color of the light after it has passed through the cellophane
Explanation:
Since in the given experiment, there is an impact of various colors of light on the cell i.e. photoelectric that should be measured. The photocell should be placed in a circuit when the current would passed. For every color that falls on the photocell, the value of the current that passed via the cell represent an idea.
In the given situation the color of light shows an independent variable and the dependent variable is clicks per minute or the current that passed through the cell