Is there a picture I can see
Answer:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
Step-by-step explanation:
Suppose that we have a cube with sidelength M.
if we rescale this measure with a scale factor 8, we get 8*M
Now, if previously the area of one side was of order M^2, with the rescaled measure the area will be something like (8*M)^2 = 64*M^2
This means that the ratio of the surfaces/areas will be 64.
(and will be the same for a pyramid, a rectangle, etc)
Then the correct options will be the ones related to surfaces, that are:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
Answer: 100
Step-by-step explanation:
Answer:
A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola
y=5−x^2. What are the dimensions of such a rectangle with the greatest possible area?
Width =
Height =
Width =√10 and Height 
Step-by-step explanation:
Let the coordinates of the vertices of the rectangle which lie on the given parabola y = 5 - x² ........ (1)
are (h,k) and (-h,k).
Hence, the area of the rectangle will be (h + h) × k
Therefore, A = h²k ..... (2).
Now, from equation (1) we can write k = 5 - h² ....... (3)
So, from equation (2), we can write
![A =h^{2} [5-h^{2} ]=5h^{2} -h^{4}](https://tex.z-dn.net/?f=A%20%3Dh%5E%7B2%7D%20%5B5-h%5E%7B2%7D%20%5D%3D5h%5E%7B2%7D%20-h%5E%7B4%7D)
For, A to be greatest ,

⇒ ![h[10-4h^{2} ]=0](https://tex.z-dn.net/?f=h%5B10-4h%5E%7B2%7D%20%5D%3D0)
⇒ 
⇒ 
Therefore, from equation (3), k = 5 - h²
⇒ 
Hence,
Width = 2h =√10 and
Height = 