Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
B. At the equator
Explanation:
The energy coming from the Sun hits the Earth's surface at different angles, depending on the latitude of the place. The more perpendicular the ray of lights hit the surface, the more the energy transmitted to the Earth's surface, the warmer the location.
The angle at which the ray of lights hit the Earth is related to the latitude: in particular, the ray of lights arrive perpendicular at the equator (
), they arrive at larger angle in the United States (which is located at intermediate latitudes) and they arrive at the largest angles at the poles. For this reason, the sun's most energy is concentrated at the equator.
Answer:
c)
V_local = -x/t^2
V_convec = x/t^2
d)
a = V_local + V_convec = 0
e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases
Explanation:
Hi!
You can see plots for a) and b) attached on this document
c)
The local acceleration is just teh aprtial derivative of the velocity with respect to t:

And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:

d)
Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign
e)
This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases, the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero
I think your best bet would be.
It acts in the direction opposite of the motion