Research scientists need a certain type of bacteria to conduct an experiment. There are 2,500 bacteria in a certain culture. The
culture grows at a rate of 25% daily. The scientists needs at least 10,000 bacteria to conduct an experiment. What is the least number of days they need to wait for the bacteria culture to reach a quantity of 10,000? (Hint: use a guess-and-check method to determine the lowest number of days that satisfy the requirement.)
At 25% per day, it will take approximately 3 days to double the population, so approximately 6 days for the population to quadruple. Checking that number, we find it is not quite enough for the experiment, so another day is required.
"Guess and check" as a method of solution works especially well if you have an automated checker to evaluate your guess. A graphing calculator or spreadsheet can work well for this.
_____
We guess 3 days as the doubling time using the "rule of 72" that says the product of percentage and doubling time is about 72. That is, 72/25 ≈ 3. (This is only a very rough approximation of doubling time, best for rates near 8%.)
(x+1)(x+8) When factoring squares whose squared coefficient is one the roots must add up to the coefficient of the slope and multiply out to the intercept value.
What you need to do is give these problems a common denominator. Which makes 3/21 and14/21 respectively. Logically, you need to walk 4/21 of the trail. This can’t be simplified further.