m = mass of the car moving in horizontal circle = 1750 kg
v = Constant speed of the car moving in the horizontal circle = 15 m/s
r = radius of the horizontal circular track traced by the car = 45.0 m
F = magnitude of the centripetal force acting on the car
To move in a circle . centripetal force is required which is given as
F = m v²/r
inserting the above values in the formula
F = (1750) (15)²/(45)
F = (1750) (225)/(45)
F = 1750 x 5
F = 8750 N
844J.
Assuming that there were no encumbrances during it's foreswing and it reached it's full potential at apogee.
Answer:
v = 54 m/s
Explanation:
Given,
The maximum height of the flight of golf ball, h = 150 m
The velocity at height h, u = 0
The velocity of the golf ball right before it hits the ground, v = ?
Using the III equations of motion
<em> v² = u² + 2gh</em>
Substituting the given values in the above equation,
v² = 0 + 2 x 9.8 x 150 m
= 2940
v = 54 m/s
Hence, the speed of the golf ball right before it hits the ground, v = 54 m/s