Answer:
(a) 62.3 N
(b) 1.89 N
(c) 0.430 kg m²
Explanation:
(a) Find the acceleration of block B.
Δy = v₀ t + ½ at²
1.80 m = (0 m/s) (2.00 s) + ½ a (2.00 s)²
a = 0.90 m/s²
Draw a free body diagram of block B. There are two forces:
Weight force mg pulling down,
and tension force Tb pulling up.
Sum of forces in the -y direction:
∑F = ma
mg − Tb = ma
Tb = m (g − a)
Tb = (7.00 kg) (9.8 m/s² − 0.90 m/s²)
Tb = 62.3 N
(b) Draw a free body diagram of block A. There are three forces:
Weight force mg pulling down,
Normal force N pushing up,
and tension force Ta pulling right.
Sum of forces in the +x direction:
∑F = ma
Ta = ma
Ta = (2.10 kg) (0.90 m/s²)
Ta = 1.89 N
(c) Draw a free body diagram of the pulley. There are two forces:
Tension force Tb pulling down,
and tension force Ta pulling left.
Sum of torques in the clockwise direction:
∑τ = Iα
Tb r − Ta r = Iα
(Tb − Ta) r = I (a/r)
I = (Tb − Ta) r² / a
I = (62.3 N − 1.89 N) (0.080 m)² / (0.90 m/s²)
I = 0.430 kg m²