Answer: The transition elements are in the d-block, and in the d-orbital have valence electrons. They can form several states of oxidation and contain different ions. Inner transition elements are in the f-block, and in the f-orbital have valence electrons.
Explanation:
I think it might be Nitrogen dioxide, but please check behind
Answer:
1. See explanation below
2. Density
3. Masses
Explanation:
1. Your picture is a bit too small to see the values but maybe this will help you.
To determine the maximum maximum mass in grams that triple beam balance can measure all you have to do is add up the maximum of each beam. So all you need to do is see the value at the last notch of each beam.
However, if you are referring to the picture that is attached in the bottom: The answer would be 610g. Because the last notches of each beam are as follows:
100 g
500 g
10 g
So we add that we get 610g.
2. density can be computed using the formula:
D = M/V
where:
D = density
M = mass
V = volume
As you can see in the both figures A and B measure 20 g, this means that their masses are the same. The density of objects can be different when either their masses, or their volumes are different. So even if they have the same mass, they can have different densities because they have different volumes.
3. Force of gravitational attraction between two objects is dependent on the masses of the two objects and the distance. The larger the mass, the stronger the gravitational force of attraction. This means that they have a direct relationship. Now when it comes to distance, the further apart they are the weaker the gravitational force of attraction, or in other words, they are indirectly related.
Answer:
Work done, W = 100 J
Explanation:
We have, Billy the friendly Robot uses 50 N of force to lift a box 2 meters in the air.
It is required to find the work done by Billy.
Work done by an object is given in terms of force and displacement. The formula used to find the work done is given by :

So, the work performed by Billy is 100 J.
<span>Scientists ignore the forces of attraction between particles in a gas under ordinary conditions</span><span> because the particles in a gas are apart and moving fast, rather than clustered and moving slow, therefore the forces of attraction are too weak to have a visible effect.</span>