Answer:
54.7°C is the new temperature
Explanation:
We combine the Ideal Gases Law equation to solve this.
P . V = n. R. T
As moles the balloon does not change and R is a constant, we can think this relation between the two situations:
P₁ . V₁ / T₁ = P₂ . V₂ / T₂
T° is absolute temperature (T°C + 273)
68.7°C + 273 = 341.7K
(0.987 atm . 564L) / 341.7K = (0.852 atm . 625L) / T₂
1.63 atm.L/K = 532.5 atm.L / T₂
T₂ = 532.5 atm.L / 1.63 K/atm.L → 326.7K
T° in C = T°K - 273 → 326.7K + 273 = 54.7°C
<span>6.
Because the general formula for alkenes is CnH2n</span>
Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
Answer:
Number of protons
Explanation:
There are three sub atomic particles. These are;
- Protons
- Electrons
- Neutrons
Among these three particles, only one determines the identity of the element. This is the Protons. The number of protons which is also called the atomic number determines the identity of an element. For instance, atom with one proton is Hydrogen and n other element can have atomic number of one.
I think the answer is 7mm but I'm not sure.
Have a great day!