The answer is 2nd Step because the first step is to define the problem and third is to define your goals
Answer:
power = 49.95 W
and it is self locking screw
Explanation:
given data
weight W = 100 kg = 1000 N
diameter d = 20mm
pitch p = 2mm
friction coefficient of steel f = 0.1
Gravity constant is g = 10 N/kg
solution
we know T is
T = w tan(α + φ )
...................1
here dm is = do - 0.5 P
dm = 20 - 1
dm = 19 mm
and
tan(α) =
...............2
here lead L = n × p
so tan(α) =
α = 3.83°
and
f = 0.1
so tanφ = 0.1
so that φ = 5.71°
and now we will put all value in equation 1 we get
T = 1000 × tan(3.83 + 5.71 )
T = 1.59 Nm
so
power =
.................3
put here value
power =
power = 49.95 W
and
as φ > α
so it is self locking screw
Answer:Decay rate constant,k = 0.00376/hr
Explanation:
IsT Order Rate of reaction is given as
In At/ Ao = -Kt
where [A]t is the final concentration at time t and [A]o is the inital concentration at time 0, and k is the first-order rate constant.
Initial concentration = 80 mg/L
Final concentration = 50 mg/L
Velocity = 40 m/hr
Distance= 5000 m
Time taken = Distance / Time
5000m / 40m/hr = 125 hr
In At/ Ao = -Kt
In 50/80 = -Kt
-0.47 = -kt
- K= -0.47 / 125
k = 0.00376
Decay rate constant,k = 0.00376/hr
The correct question;
An object of irregular shape has a characteristic length of L = 1 m and is maintained at a uniform surface temperature of Ts = 400 K. When placed in atmospheric air at a temperature of Tinfinity = 300 K and moving with a velocity of V = 100 m/s, the average heat flux from the surface to the air is 20,000 W/m² If a second object of the same shape, but with a characteristic length of L = 5 m, is maintained at a surface temperature of Ts = 400 K and is placed in atmospheric air at Too = 300 K, what will the value of the average convection coefficient be if the air velocity is V = 20 m/s?
Answer:
h'_2 = 40 W/K.m²
Explanation:
We are given;
L1 = 1m
L2 = 5m
T_s = 400 K
T_(∞) = 300 K
V = 100 m/s
q = 20,000 W/m²
Both objects have the same shape and density and thus their reynolds number will be the same.
So,
Re_L1 = Re_L2
Thus, V1•L1/v1 = V2•L2/v2
Hence,
(h'_1•L1)/k1 = (h'_2•L2)/k2
Where h'_1 and h'_2 are convection coefficients
Since k1 = k2, thus, we now have;
h'_2 = (h'_1(L1/L2)) = [q/(T_s - T_(∞))]• (L1/L2)
Thus,
h'_2 = [20,000/(400 - 300)]•(1/5)
h'_2 = 40 W/K.m²
Answer:
False
Explanation:
CAD software is used for designing and making 3D models of almost anything you can imagine.