Answer:
1090 Steel >1040 Steel > Pure aluminium >Diamond.
Explanation:
Toughness:
Toughness can be define as the are of load -deflection diagram up to fracture point.
Modulus of toughness can be defines as the area of stress-strain diagram up to fracture point.Modulus of toughness is the property of material.
So the decreasing order of toughness can be given as follows
1090 Steel >1040 Steel > Pure aluminium >Diamond.
Answer:
Integrity: involves maintaining and assuring the accuracy of data over its life-cycle
Explanation:
Confidentiality: This is a CIA triad designed to prevent sensitive information from reaching the wrong people, while making sure that the right people have access to it.
Integrity: This is a CIA triad that involves maintaining the consistency, accuracy, and trustworthiness of data over its entire life cycle.
Availability: This is a CIA triad that involves hardware repairs and maintaining a correctly functioning operating system environment that is free of software conflicts.
Authentication:This is a security control that is used to protect the system with regard to the CIA properties.
Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
Answer:
GMAW
Explanation:
It's literally the initials of that type of welding
Answer:
battery life in year = 9 years and 48 days
Explanation:
given data
Battery Ampere-hours = 1.5
Pulse voltage = 2 V
Pulse width = 1.5 m sec
Pulse time period = 1 sec
Electrode heart resistance = 150 Ω
Current drain on the battery = 1.25 µA
to find out
battery life in years
solution
we get first here duty cycle that is express as
duty cycle =
...............1
duty cycle = 1.5 × 
and applied voltage will be
applied voltage = duty energy × voltage ...........2
applied voltage = 1.5 ×
× 2
applied voltage = 3 mV
so current will be
current =
................3
current = 
current = 20 µA
so net current will be
net current = 20 - 1.25
net current = 18.75 µA
so battery life will be
battery life = 
battery life = 80000 hours
battery life in year = 
battery life in year = 9.13 years
battery life in year = 9 years and 48 days