Answer:
-50.005 KJ
Explanation:
Mass flow rate = 0.147 KJ per kg
mass= 10 kg
Δh= 50 m
Δv= 15 m/s
W= 10×0.147= 1.47 KJ
Δu= -5 kJ/kg
ΔKE + ΔPE+ ΔU= Q-W
0.5×m×(30^2- 15^2)+ mgΔh+mΔu= Q-W
Q= W+ 0.5×m×(30^2- 15^2) +mgΔh+mΔu
= 1.47 +0.5×1/100×(30^2- 15^2)-9.7×50/1000-50
= 1.47 +3.375-4.8450-50
Q=-50.005 KJ
Answer:
i think its d frequency
Explanation:
hz on a multimeter means frequency setting
Answer:
The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s
Explanation:
Assuming the two oils are Newtonian fluids.
From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.
τ = μ (∂v/∂y)
There are oils above and below the plate, so we can write this expression for the both cases.
τ₁ = μ₁ (∂v/∂y)
τ₂ = μ₂ (∂v/∂y)
dv = 0.3 m/s
dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)
τ₁ = μ₁ (0.3/0.03) = 10μ₁
τ₂ = μ₂ (0.3/0.03) = 10μ₂
But the shear stress on the plate is given as 29 N per square meter.
τ = 29 N/m²
But this stress is a sum of stress due to both shear stress above and below the plate
τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29
But it is also given that one viscosity is twice the other
μ₁ = 2μ₂
10μ₁ + 10μ₂ = 29
10(2μ₂) + 10μ₂ = 29
30μ₂ = 29
μ₂ = (29/30) = 0.967 Pa.s
μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s
Hope this Helps!!!
Concentrating solar power (CSP) plants use mirrors to concentrate the sun's energy to drive traditional steam turbines or engines that create electricity. The thermal energy concentrated in a CSP plant can be stored and used to produce electricity when it is needed, day or night. Today, roughly 1,815 megawatts (MWac) of CSP plants are in operation in the United States.
Parabolic Trough
Parabolic trough systems use curved mirrors to focus the sun’s energy onto a receiver tube that runs down the center of a trough. In the receiver tube, a high-temperature heat transfer fluid (such as a synthetic oil) absorbs the sun’s energy, reaching temperatures of 750°F or higher, and passes through a heat exchanger to heat water and produce steam. The steam drives a conventional steam turbine power system to generate electricity. A typical solar collector field contains hundreds of parallel rows of troughs connected as a series of loops, which are placed on a north-south axis so the troughs can track the sun from east to west. Individual collector modules are typically 15-20 feet tall and 300-450 feet long.
Compact Linear Fresnel Reflector
CLFR uses the principles of curved-mirror trough systems, but with long parallel rows of lower-cost flat mirrors. These modular reflectors focus the sun's energy onto elevated receivers, which consist of a system of tubes through which water flows. The concentrated sunlight boils the water, generating high-pressure steam for direct use in power generation and industrial steam applications.