1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
12

Jjjjjmmmmmmmmmml.n;nLN/n/kn

Engineering
1 answer:
GaryK [48]3 years ago
6 0
Jjchdypyepyspgzlbblxlbxljkkvgigirudlh),,$&,‘joyful fhdjdududufjnbd
You might be interested in
What is the measurement below?
Bess [88]

Explanation:

इसिसिसिसैस्स्स्स्स्स्स्स्स्स्सूस्सोस्स्स्स्स्स

8 0
3 years ago
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
Steam at 1 MPa, 300 C flows through a 30 cm diameter pipe with an average velocity of 10 m/s. The mass flow rate of this steam i
stealth61 [152]

Answer:

\dot m = 2.74 kg/s

Explanation:

given data:

pressure 1 MPa

diameter of pipe  =  30 cm

average velocity = 10 m/s

area of pipe= \frac[\pi}{4}d^2

                 = \frac{\pi}{4} 0.3^2

A = 0.070 m2

WE KNOW THAT mass flow rate is given as

\dot m = \rho A v

for pressure 1 MPa, the density of steam is = 4.068 kg/m3

therefore we have

\dot m = 4.068 * 0.070* 10

\dot m = 2.74 kg/s

7 0
4 years ago
What is the best way to submit your assignments?
Mrac [35]
A. Email your teacher right away. It would be the safest option.
4 0
3 years ago
Read 2 more answers
How does java achieve portable
sergejj [24]

Answer:

Java is called portable because you can compile a java code which will spew out a byte-code, and then you run that code with Java Virtual Machine. Java Virtual Machine is like an interpreter, which reads the compiled byte-code and runs it. So first of all, you need to install the JVM on the system you want.

Explanation:

5 0
3 years ago
Other questions:
  • A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the bra
    7·1 answer
  • There are a number of requirements that employers must do to protect their workers from caught-in or
    12·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • Consider the experiment of Problem 1.27, in which a frictionless puck is sliding straight across a rotating turntable through th
    10·1 answer
  • Help pls I don’t understand the question.
    9·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • 14. The flow water in a 10-in Schedule 40 pipe is to be metered. The temperature of the water is
    8·1 answer
  • Can someone help me plz!!! It’s 25 points
    6·2 answers
  • prove that the heat transfer at the constant pressure is given by the enthalpy change during the process​
    7·1 answer
  • Determine the maximum height (in inches) that a lift pump can raise water (0.9971 g/ml) from a well at normal atmospheric pressu
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!