1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
12

Jjjjjmmmmmmmmmml.n;nLN/n/kn

Engineering
1 answer:
GaryK [48]3 years ago
6 0
Jjchdypyepyspgzlbblxlbxljkkvgigirudlh),,$&,‘joyful fhdjdududufjnbd
You might be interested in
A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
jonny [76]

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

7 0
3 years ago
Create a separate function file fieldtovar.m that receives a single structure as an input and assigns each of the field values t
Soloha48 [4]

Answer:

Explanation gives the answer

Explanation:

% Using MATLAB,

% Matlab file : fieldtovar.m

function varargout = fieldtovar(S)

% function that accepts single structure as input, assigning each

% of the field values to user-defined variables

fields = fieldnames(S); % get the field names of the input structure

% check if number of user-defined variables and number of fields in

% structure are equal

if nargout == length(fields)

% if equal assign each value of structure to user-defined varable

for i=1:nargout

varargout{i} = getfield(S,fields{i});

end

else

% if not equal display an error message

error('The number of output variables does not equal the number of fields');

end

end

%This brings an end to the program

4 0
3 years ago
Turn on your____
storchak [24]

Answer:

b

Explanation:

5 0
3 years ago
Read 2 more answers
In a short essay, discuss the question, "How are you an innovator?"
iragen [17]

Answer:

Being innovative means doing things differently or doing things that have never been done before. An innovator is someone who has embraced this idea and creates environments in which employees are given the tools and resources to challenge the status quo, push boundaries and achieve growth.

Explanation:

Hope it helps..

But it's a little bit long..

Correct me if I'm wrong..

7 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 0.6 W of power. The resistor is 1.5 cm long, and has a diameter of
Burka [1]

Answer:

a. 51.84Kj

b. 2808.99 W/m^2

c. 11.75%

Explanation:

Amount of heat this resistor dissipates during a 24-hour period

= amount of power dissipated * time

= 0.6 * 24 = 14.4 Watt hour

(Note 3.6Watt hour = 1Kj )

=14.4*3.6 = 51.84Kj

Heat flux = amount of power dissipated/ surface area

surface area = area of the two circular end  + area of the curve surface

=2*\frac{\pi D^{2} }{4} + \pi DL\\=2*\frac{\pi *(\frac{0.4}{100} )^{2} }{4} + \pi *\frac{0.4}{100} *\frac{1.5}{100}

= 2.136 *10^-4 m^{2}

Heat flux =\frac{0.6}{2.136 * 10^{-4} } = 2808.99 W/m^{2}

fraction of heat dissipated from the top and bottom surface

=\frac{\frac{2*\pi D^{2} }{4} }{\frac{2*\pi D^{2}}{4} + \pi DL } \\\\=\\\frac{\frac{2*\pi *(\frac{0.4}{100} )^{2} }{4} }{\frac{2*\pi *(\frac{0.4}{100}  )^{2} }{4} +\pi *\frac{0.4}{100} *\frac{1.5}{100} } \\\\=\frac{2.51*10^{-5} }{2.136*10^{-4} } \\\\\= 0.1175

=11.75%

8 0
3 years ago
Read 2 more answers
Other questions:
  • An overhead 25m long, uninsulated industrial steam pipe of 100mm diameter is routed through a building whose walls and air are a
    9·1 answer
  • A company that produces footballs uses a proprietary mixture of ideal gases to inflate their footballs. If the temperature of 23
    11·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Which of the following about valence electron is correct?
    10·2 answers
  • Select the correct answer.
    11·1 answer
  • What is photosynthesis​
    9·2 answers
  • A new approval process is being adapted by Ursa Major Solar. After an opportunity has been approved, the contract is sent to the
    9·1 answer
  • Time left 0:35:32 Three steel rod (E = 200 GPa) supports 36 KN Load P. Each of the rods AB and CD has a 200 mm? cross- sectional
    13·1 answer
  • In a morphological matrix, which of the following contains the parameters that are essential to a design?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!