Answer:
diameter is 14 mm
Explanation:
given data
power = 15 kW
rotation N = 1750 rpm
factor of safety = 3
to find out
minimum diameter
solution
we will apply here power formula to find T that is
power = 2π×N×T / 60 .................1
put here value
15 ×
= 2π×1750×T / 60
so
T = 81.84 Nm
and
torsion = T / Z ..........2
here Z is section modulus i.e = πd³/ 16
so from equation 2
torsion = 81.84 / πd³/ 16
so torsion = 416.75 / / d³ .................3
so from shear stress theory
torsion = σy / factor of safety
so here σy = 530 for 1020 steel
so
torsion = σy / factor of safety
416.75 / d³ = 530 ×
/ 3
so d = 0.0133 m
so diameter is 14 mm
Answer:
Option B (Starter Control Circuit) is the right option.
Explanation:
- This same switching is normally put upon this isolated side of something like the transmission Arduino microcontroller throughout the configuration that is using the ignition just to command the broadcast.
- It uses a secondary relay isolated to regulate electrical current throughout the solenoid starting system.
All other given options are not related to the given instance. So the above option is correct.
Answer:
The design process is at the verify phase of Design for Six Sigma
Explanation:
In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed
Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify
Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.
Answer:
bts biot bts biot jungkukkk
jungkukkkbiot
Explanation:
bts biot bts biot jungkukkk
jungkukkkbiot
Answer:
This is an asynchrnous 3-bit counter. Just note that this design is different and works differently than its synchronous counterpart. It's an easier design than its synchronous counterpart, and is not as reliable because it has delays.