Answer: Outside an intersections
Explanation:
The air leaving through the balloon's mouth pulls the balloon in the same direction as the exiting air, so the balloon experiences a net force. All air surrounding the balloon pushes the balloon forward.
Answer:
The volume flow rate necessary to keep the temperature of the ethanol in the pipe below its flashpoint should be greater than 1.574m^3/s
Explanation:
Q = MCp(T2 - T1)
Q (quantity of heat) = Power (P) × time (t)
Density (D) = Mass (M)/Volume (V)
M = DV
Therefore, Pt = DVCp(T2 - T1)
V/t (volume flow rate) = P/DCp(T2 - T1)
P = 20kW = 20×1000W = 20,000W, D(rho) = 789kg/m^3, Cp = 2.44J/kgK, T2 = 16.6°C = 16.6+273K = 289.6K, T1 = 10°C = 10+273K = 283K
Volume flow rate = 20,000/789×2.44(289.6-283) = 20,000/789×2.44×6.6 = 1.574m^3/s (this is the volume flow rate at the flashpoint temperature)
The volume flow rate necessary to keep the ethanol below its flashpoint temperature should be greater than 1.574m^3/s
Answer:
b). The same for all pipes independent of the diameter
Explanation:
We know,


From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.
We also know,
Factors on which thermal resistance of insulation depends are :
1. Thickness of the insulation
2. Thermal conductivity of the insulating material.
Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.
Explanation:
The invention of the pendulums driver ____ ao in the 1600s paved the way for a new industrial era. Add answer.