Whenever an object is falling, its potential energy
is decreasing and its kinetic energy is increasing.
Olivia's potential energy is decreasing and her kinetic energy
is increasing as she moves toward the right side of the picture,
all the way from W, through X, to the bottom of the arc.
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13:
beryllium-15:
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:
Where is the amount we want to find:
Finally:
Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Better technology is helping us because we can see more stuff like the microscope we able to make assumptions based on what we saw.
Answer:
t=0.42s
Explanation:
Here you have an inelastic collision. By the conservation of the momentum you have:
m1: mass of the bullet
m2: wooden block mass
v1: velocity of the bullet
v2: velocity of the wooden block
v: velocity of bullet and wooden block after the collision.
By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:
Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:
Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:
hence, the time is t=0.42 s