Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
Hear is transferred from the heating elements to the Pot by Conductivity
Answer:
leather
Explanation:
plz mark as brainliest......hope it helps
Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Explanation:
Given;
initial velocity of proton,
= 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E

where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd




Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Mirrors reflect meaning shows what would be seen if everything was turned around, therefore, it shows text backwards because if it is turned around, it is in reverse order.