Answer:
i need some more coins LMAI
<span>A) The force multiplied by the time the objects are in contact.
Hope this helps!</span>
Answer:
w = 25.05 rad / s
, α = 0.7807 rad / s²
, θ = 1972.75
Explanation:
This is a kinematic rotation exercise, let's start by looking for the acceleration when the engine is off
θ = w₀ t - ½ α t²
α = (w₀t - θ) 2/t²
let's reduce the magnitudes to the SI system
w₀ = 530 rev / min (2pi rad / 1 rev) (1 min / 60 s) = 55.5 rad / s
θ = 250 rev (2pi rad / 1 rev) = 1570.8 rad
let's calculate the angular acceleration
α = (55.5 39 - 1570.8) 2/39²
α = 0.7807 rad / s²
having the acceleration we can calculate the final speed
w = w₀ - ∝ t
w = 55.5 - 0.7807 39
w = 25.05 rad / s
the time to stop w = 0
0 = wo - alpha t
t = wo / alpha
t = 55.5 / 0.7807
t = 71.09 s
the angle traveled
w² = w₀⁹ - 2 α θ
w = 0
θ = w₀² / 2α
let's calculate
θ = 55.5 2 / (2 0.7807)
θ = 1972.75
Mass and energy are equivalent. I'm doing the same test right now.
Jovian planets are also known as gas giants and are the four outer planets Jupiter, Saturn, Uranus and Neptune. Uranus stands out from this group because of the tilt of its axis. Uranus is tilted on its side. Scientists speculate that this tilt may be as a result of a collision with a large body just after the planet was formed. Uranus is tilted 98 degrees compared to earth's 23 degrees.