Not close because it’ll blow up if too close.
Answer:
The ball will reach the ground in 0.8s
Option C
Explanation:
Given:
- Takes t = 0.8 s for ball to reach ground when thrown horizontal from top of a building.
Find:
If it had been thrown with twice the speed in the same direction, it would have hit the ground in how many second.
Solution:
- We know that the amount of time taken to hit the ground is determined by the vertical distance i.e height at which it is thrown. The displacement of ball from top is given by:
S_y = S_o + V_i,y*t + 0.5*g*t^2
- We know that the S_o = height of the building.
We also know that the ball os thrown horizontally; hence, y-component of initial velocity is zero. V_y,i = 0
0 = h + 0 + 0.5*g*t^2
- Hence, the time taken t is:
t = sqrt ( 2h / g)
- The time taken to reach the ground is independent of the initial speed. Hence, the ball will reach the ground in 0.8s .
Answer:
the answer is 5 electrons
Explanation:
because its the same name as the amount of protons
<u>Answer:</u> The word for the definition of an electron in the highest occupied energy level of an atom is " valence electron".
<u>Explanation:</u>
A valence electron is an external shell electron associated with an atom in chemistry and physics that can participate in the creation of a chemical bond if the highest occupied energy level of an atom is not closed. All atoms in a single covalent bond add one valence electron to form a mutual pair.
The periodic table showcases the arrangement of valence electrons group and block wise like:
- Alkali metals have <em>n </em><em>s</em> 1 as external shell configuration like H, Li, Na, K etc.
- Alkaline metals have <em>n</em> s 2 as external hell configuration like Be, Mg, Ca etc.
- p-block comprises group 13 to 18 having general electronic configuration <em>n </em><em>s</em> 2, <em>n</em><em> p</em><em> </em>1–6.
- d-block or transition metals have general electronic configuration (<em>n</em>-1) d 1–10, <em>n </em>s 1–2.
- f-block or inner transition metals have general electronic configuration (<em>n</em>-2) f^1–14 (<em>n</em>-1) d^0-1 <em>n </em>s^2.