energy is required to move from one state or phase of matter to the next. Energy is used to make a liquid into a gas or a solid into a liquid.
Answer:
<span>Formula New Combination Predicted Formula
</span>
NaCl potassium + chlorine KCl
AlCl₃ aluminum + fluorine AlF₃
CO₂ tin + oxygen SnO₂
MgCl₂ calcium + bromine CaBr₂
HCl cesium + iodine CsI
<span>
CCl₄ silicon + bromine SiBr₄</span>
Explanation:
1) The question is incomplete. The first part is missing.
This is the first part of the question.
<span>Applying
the principle that the elements of a particular column in the Periodic
Table share the same chemical properties, complete the following chart.
The first one has been done for you.
</span>
2) This is the given chart:
<span>Formula New Combination Predicted Formula
</span>
Cu₂O silver + oxygen Ag₂O ← this is the example.
NaCl potassium + chlorine
<span>
AlCl₃ aluminum + fluorine </span>
CO₂ tin + oxygen
<span>
MgCl₂ calcium + bromine </span>
<span>
HCl cesium + iodine </span>
<span>
CCl₄ silicon + bromine
</span>
3) This is how you find the new formula to complete the chart.
i) NaCl potassium + chlorine
Since potassium is in the same group of sodium, you predict that in the new formula Na is replaced by K giving KCl.
ii) AlCl₃ aluminum + fluorine
Since fluorine is in the same group that Al, then you predict that in the new formula Cl is replaced by F leading to AlF₃
iii) CO₂ tin + oxygen
Since tin is in the same group that C, you predict that in the new formula C is replaced by Sn leading to SnO₂
iv) MgCl₂ calcium + bromine
Since calcium is in the same group that Mg, and bromine is in the same group that Cl, you predict thea in the new formula calcium replaces Mg and bromine replaces Cl, leading to CaBr₂
v) HCl cesium + iodine
Since H is in the same column that cesium and Cl is in the same colum that iodine, you predict that in the new formula Cs replaces H and I replaces Cl leading to: CsI
<span>
vi) CCl₄ silicon + bromine
</span>
Since silicon is in the same column that C and bromine is in the same column that Cl, you predict that in the new formula Si replaces C and Br replaces Cl, leading to SiBr₄
The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
add up the mass of protons and neutrons
Answer:
Like you, like you
Like you, ooh
I found it hard to find someone like you
Like you, like you
Send your location, come through
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
Explanation: