Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
A. The products of the change are different from the starting
substances.
<u>Explanation:</u>
Whenever there is a physical change it may just affect the phase change but the properties remains the same. Whenever there is an occurrence of a chemical change, it was indicated by some of these things such as,
- The products are exactly different from the products.
- Chemical properties of these reactants are entirely different from that of the products.
- Chemical composition as well as the physical properties of the reactants and the products will change
I think its B because if u increase the mass itll have more force which will increase the momentum
Answer:
n= | Shell | Maximum Number of Electrons
1 | 1st Shell | 2
2 | 2nd Shell | 8
3 | 3rd Shell | 18
4 | 4th Shell | 32
Explanation: cause :)
Answer:
Percent yield of SiC is 77.0%.
Explanation:
Balanced reaction: 
Molar mass of SiC = 40.11 g/mol
Molar mass of
= 60.08 g/mol
So, 100.0 kg of
=
moles of
= 1664 moles of 
According to balanced equation, 1 mol of
produces 1 mol of SiC
Therefore, 1664 moles of
produce 1664 moles of SiC
Mass of 1664 moles of SiC =
= 66743g = 66.74 kg (4 sig. fig.)
Percent yield of SiC = [(actual yield of SiC)/(theoretical yield of SiC)]
%
=
%
= 77.0%