<h2><u>Answer:</u></h2>
It wasn't an adjustment in the condition of issue on the grounds that the vitality in the can did not change. Additionally, since this was a physical change, the atoms in the can are as yet similar particles. No synthetic bonds were made or broken. You added enough vitality to make a stage change from strong to fluid.
The main changes recorded which don't include framing or breaking substance bonds would bubble and liquefying. Bubbling and liquefying are physical changes as opposed to synthetic changes, so no new items are shaped.
Answer:
2.93g
Explanation:first, let us calculate the number of mole of NaCl present in the solution. This is illustrated below:
Molarity = 0.5M
Volume = 100cm^3 = 100/1000 = 0.1L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of NaCl = 0.5 x 0.1 = 0.05mole
Now we can obtain the mass of NaCl as follows:
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mole of NaCl = 0.05mol
Mass of NaCl =?
Mass = number of mole x molar Mass
Mass of NaCl = 0.05 x 58.5
Mass of NaCl = 2.93g
Bicarbonate buffer system in blood consists of carbonic acid and bicarbonate ion. H2CO3/HCO3-
When a base enters the body the acid part of the buffer reacts with the base.
Thats the carbonic acid (H2CO3) reacts with the base.