Answer:
The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²
The rocket's motion for analysis sake is divided into two phases.
Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m
Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.
Explanation:
The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.
The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.
The detailed step by step solution to the problems can be found in the attachment below.
Thank you and I hope this solution is helpful to you. Good luck.
Answer: Approximately 3.65 hours
Explanation:
55 km/h x 3.65 hrs = 200.75 Km/h
Answer:
Guysi hate math answer this guy plsss ssss
When a satellite is revolving into the orbit around a planet then we can say
net centripetal force on the satellite is due to gravitational attraction force of the planet, so we will have


now we can say that kinetic energy of satellite is given as


also we know that since satellite is in gravitational field of the planet so here it must have some gravitational potential energy in it
so we will have

so we can say that energy from the fuel is converted into kinetic energy and gravitational potential energy of the satellite
Answer:
The diameter of the bull-wheel is 3.82
Explanation:
Given that,
Velocity = 2.0 m/s
Angular velocity = 10 rev/m


We need to calculate the diameter of bull-wheel
Using formula of angular velocity


Put the value into the formula


The diameter of the bull-wheel



Hence, The diameter of the bull-wheel is 3.82 m.