The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
When the magnets are released and begin to move, the magnetic force changes potential energy into kinetic energy;<u> option D</u>
<h3>What is magnetic force?</h3>
Magnetic force can be defined as the force of attraction or repulsion that is felt or produced between the magnetic poles and electrically charged moving particles.
Magnetic force is the force that exists due to the attractio or repulsion of objects place around the region of space where a maget exerts its force.
When a magnet is released ai a system of magnets and allowed to move it increases the kinetic eergy of the system by converting potential energy to kinetic energy.
Learn more about magnetic force at: brainly.com/question/28989998
#SPJ1
Since the boot-print was left there nearly 50 years ago, there has been very little wind and very little rain in that area, and plus, there have been very few people or other animals walking around in that spot to disturb it.
The center-seeking change in velocity of an object moving in a circle is the centripetal acceleration.
So, by Newton's laws, we know that an object moving with a given velocity will remain in constant motion with a constant velocity until we apply an acceleration.
So we define acceleration as the rate of change of the velocity, also remember that velocity is a vector (has magnitude and direction), so, if there is a change the direction of the velocity, we have an acceleration that causes that.
In circular motion, the velocity vector is always perpendicular to the radius of the circle, and it can only be possible if the velocity direction is changing constantly. This will happen because of something called centripetal acceleration.
This acceleration points radially inwards (to the center of the circle) so is also perpendicular to the velocity of the moving object, and this is what causes the constant change in the direction of the velocity of the moving object.
Just to give an example, if you have a string with a mass on one end, and with your hand, you rotate the mass (from the string), the tension of the string would be the centripetal acceleration.
If you want to learn more about circular motion, you can read:
brainly.com/question/2285236
Answer:
Motion maps are used to illustrate the direction and position of an object. Using the motion map, the description of the object position and velocity is as follows:
The object starts its movement from the origin with a large velocity, before moving back to the origin with a smaller velocity. It stops for 1 second in the origin, then moves away with a larger velocity, Finally, it moves back towards the origin with a smaller velocity.
See attachment for the motion map, where the number on each arrow in the map, represents the position of the object.
Note that; the long arrow means large velocity while the short arrow means small velocity
Next, we analyze the direction and position using the arrows
The first arrow shows that the object starts from the origin with a large velocity
The direction and length of the second arrow show that, the object then returned to the origin with a smaller velocity.
There is a dot in front of the second arrow. This dot indicates that the object stops for one second.
The third arrow means that, the object moved from the origin with a larger velocity
The direction and position of the fourth and fifth arrows indicate that the object then moves towards the origin, with a smaller velocity.
Explanation: