The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

Generally, the equation for Rate of flow of Liquid is mathematically given as

$$
Where dP is pressure difference r is the radius
is the viscosity of water
L is the length of the pipe


In $30s the quantity that flows out of the tube

In conclusion, the quantity that flows out of the tube

Read more about the flows rate
brainly.com/question/27880305
#SPJ1
<span>In the question,' when you are sitting a few feet from the fire, your skin feels warmed. What form of heat transfer are acting to transfer heat from the fire to your skin, the correct option is A, that is, convection and radiation. Heat transfer is defined as the exchange of thermal energy between physical systems. The rate at which the heat is transfer depends on the temprature of the system and the properties of the intervening medium through which the heat is been transfered. There are three basic modes of heat transfer, these are: conduction, convection and radiation. Conduction is defined as the transfer of heat between two bodies through physical contact. When two bodies which have different temprature come in contact, there will be a transfer of heat energy between them until the two of them have the same temprature. Conduction usually occurs in solids and liquids; it occurs in gases also but it is extremely slow. Convection is the process by which heat is transfer in fluids, that is, liquids and gases. This is how convection operates: when a fluid is heated, it expands and it becomes lighter, this makes it to rise upward and move to the cooler part of the container, as it rises, it will be replaced by the unheated surrounding particles. This cycle continues until heat is evenly distributed all through the fluid. There are two types of convection: natural and forced convection. The heating of the earth surface by the sun ray is an example of natural convection while the air conditioner we use at home operates by mean of forced convection. Both conduction and convection require matter for heat transfer. Radiation is the transfer of heat from one place to another through electromagnetic waves. The hot body transfer heat by emitting electromagnetic waves. The properties of the electromagnetic waves depend on the temperature of the body. The higher the temperature the more intense the rate of emission of radiation. Radiation can occur in all objects and does not require matter for heat transfer. The heat of the sun reaches the earth surface by means of radiation. In the question given, as the air surrounding the fire were heated they rise and were replaced by the unheated air particles. The continuation of this cycle makes the heat energy to be transferred to the objects around. Thus, the heat from the fire was transferred via convection and radiation. </span>
A heavy truck moving a 30 mph. It has more mass.
Based on the given displacement vs time graph, the object is at rest at a time interval of: B. 2 to 3 seconds
<h3>What is a
displacement vs time graph?</h3>
A displacement vs time graph can be defined as a type of graph that is used to graphically represent the distance traveled (covered) or displacement experienced by an object from its starting position with respect to the time when it has started moving.
In Science, a physical object being at rest simply means that the position of the object is not changing with respect to time. Thus, both the slope and velocity of the physical object would be equal to zero when it is at rest.
Between 0 to 2 seconds on the given displacement vs time graph (see attachment), this object is traveling at a constant, positive velocity. However, at a time interval of 2 to 3 seconds the object is at rest.
Read more on displacement vs time graph here: brainly.com/question/19144777
#SPJ1