Answer:
a. True
Explanation:
Illumination distance is the distance, up to which the light of the vehicle can reach. Hence, it is a maximum distance from the, that driver can see.
Stopping distance is the minimum distance required by the car to stop after brakes are applied.
So, in order to avoid any accident the illumination distance must be greater than the stopping distance. So, the driver can stop the vehicle in time, when he sees something in front of it.
Since, the stopping distance in this case is two or three times longer than illumination distance. Therefore, low beam light does not provide enough visibility in high speed driving situations.
Hence, the correct option is:
<u>a. True</u>
<u></u>
The mass of the quarterback is 61.2 kg.
Explanation:
mass of the football player = m1 = 102 kg
mass of the quarterback = m2 = ?
velocity of the football player = v1 = 8 m/s
According to the law of conservation of momentum:
The total momentum of a system before and after the collision remains constant. Assuming the situation as an isolated system which is not affected by any external factors, we have:
m₁v₁ + m₂v₂ = (m₁+m₂)V
Here, we need to find m₂.
We assume that the quarterback is standing still when he is attacked by the football player so v₂ = 0 m/s
After the collision both of them fall to the ground with a velocity of 5 m/s so V = 5 m/s

Keywords: momentum, velocity, law of conservation of momentum
Learn more about Law of Conservation of Momentum from brainly.com/question/7538238
#learnwithBrainly
momm=massxvelocity
momm=1200x2.5=120x25=600x5=3000kgm/s
Answer:
.
Explanation:
Intensity
of the electromagnetic radiation is given by

where
is the distance from the EM source (the center of the sun, in our case), and
is the power output of the sun and it has the value

Since the radius of the sun in meters is
, the intensity
of the electromagnetic radiation at the surface of the sun is

The intensity of the electromagnetic radiation at the surface of the sun is
.
<u>Displacement</u> is the difference between final position and initial position.
<u>Momentum</u> is the quantity of motion contained by an object.
- It is the product of <em><u>mass and velocity.</u></em>