Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer:
A. El volumen
B. La densidad.
Explanation:
A derived quantity is defined as one that has to be calculated by using two or more other measurements.
Volume is a derived quantity because it requires one to use different measurements to determine it. For instance, in the case of a cube, the length, width and height of the cube are all needed to calculate volume.
Density is also a derived quantity because it needs both volume and mass for it to be calculated.
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.
For a vertical spring launcher is attached to the top of a block and a ball is placed in the launcher, the position of the ball will be behind the box
<h3>What will be the position of the ball relative to the spring launcher?</h3>
Generally, the equation for the conservation of momentum principle is mathematically given as
(M+m) V1 = M*V2
Therefore, with the ball moving forward we have that; the ball at top it wii be behind the box,
Read more about Motion
brainly.com/question/605631