Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.
Answer:
Group and Periods of the Periodic Table of Elements. The three major groups on the Periodic Table are the metals, nonmetals and metalloids. Elements within each group have similar physical and chemical properties.
Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.
Answer:

Explanation:
A force exerts work when there is a displacement of its point of application in the direction of that force. Therefore, the work done by a system is defined as the inner product between the applied force and the displacement:

In this case, we have:

So, replacing this:
