Endurance is the ability to complete extended periods of physical activity
Answer:
Isaac Newton
Explanation:
Because i learned this in school
Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
Answer:
At which point does the planet have the least gravitational force acting on it?
Explanation:
In an elliptical orbit, when a planet is at its furthest point from the Sun, it is under the least amount of gravity, meaning that the force of gravity is strongest when it is closest.
the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet
Explanation:
In this problem we are analzying the gravitational force acting between a planet and its moon.
The magnitude of the gravitational attraction between two objects is given by
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we are considering a planet and its moon. According to Newton's third law of motion,
"When an object A exerts a force (action force) on an object B, then object B exerts an equal and opposite force (reaction force) on object A"
If we apply this law to this situation, this means that the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly