Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
<span>All isolines, or iso-intensity lines, connect points having equal values.</span>
combustion of fossil fuels would be the correct answer when dealing with the alteration of the carbon cycle.
The acceleration of the object if the net force is decreased = 0.13 m/s²
<h3>Further explanation</h3>
Given
A net force of 0.8 N acting on a 1.5-kg mass.
The net force is decreased to 0.2 N
Required
The acceleration of the object if the net force is decreased
Solution
Newton's 2nd law :

The mass used in state 1 and 2 remains the same, at 1.5 kg
ΣF=0.8 N
m=1.5 kg
The acceleration, a:

ΣF=0.2 N
m=1.5 kg
The acceleration, a:
