Heat is measured in joules and temperature is measured in F degrees or C degrees.
Answer : The correct option is (d) 2.73 m
Explanation :
By the 2nd equation of motion,

where,
s = distance or height = ?
u = initial velocity = 3.0 m/s
t = time = 0.5 s
a = acceleration due to gravity = 
Now put all the given values in the above equation, we get:


Therefore, the correct option is (d) 2.73 m
Acceleration is how much the velocity changes within a period of time so,
Acceleration= is the change in velocity divided by change in time
your units will be m/s squared
Answer:
They both have the same angular speed.
Explanation:
The mathematical formula for angular speed is:

where
is angular speed,
is a constant, and
is the period (the time it takes the marry-go-round to complete a lap).
What we can see from the formula is that, since the
does not change its value, the angular speed depends only on the period T.
In this case for both the children closer to the outher edge and for the children closer to the center, the time to complete a lap is the same, because the time does not depend on where they are sitting in the marry go round. This means that the period for both is the same.
Thus, since the period for both is the same, the angular speed given by
will also be the same
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B