It is force because work/distance= force
Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
0.4
Explanation:
Because 3m/s is the initial velocity(u) and 5m/s is the final velocity(v) and time is 5 sec.
So, acceleration = v-u ÷ t
I'm confused
Answer:
the range or the ball is 48.81 m
Explanation:
given;
Nicole throws a ball at 25 m/s at an angle of 60 degrees abound the horizontal.
find:
What is the range of the ball?
solution:
let Ф = 25°
Vo = 25 m/s
<u>consider x-motion using time of fight: x = Vox * t</u>
where x = R = range
t =<u> 2 Voy </u>
g
R =<u> Vo² sin (2Ф)</u>
g
plugin values into the formula:
R = <u>(25)² sin (2*25) </u>
9.81
R = 48.81 m
therefore, the range or the ball is 48.81 m