The correct option will be
D. Time, initial velocity and final velocity
The Formula can be written as,
Acceleration=Final velocity-Initial Velocity/Time
A liquid is a matter that neither has a fixed shape but fixed volume...in college really need to know this.
GOOD LUCK
Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:four times
Explanation:
Given
mass of both cars A and B are same suppose m
but velocity of car B is same as of car A
Suppose velocity of car A is u
Velocity of car B is 2 u
A constant force is applied on both the cars such that they come to rest by travelling certain distance
using to find the distance traveled
where, v=final velocity
u=initial velocity
a=acceleration(offered by force)
s=displacement
final velocity is zero
For car A


For car B


divide 1 and 2 we get

thus 
distance traveled by car B is four time of car A
Answer: D. 0.57
Explanation:
The formula to calculate the eccentricity
of an ellipse is (assuming the moon's orbit in the shape of an ellipse):

Where:
is the apoapsis (the longest distance between the moon and its planet)
is the periapsis (the shortest distance between the moon and its planet)
Then:


This is the moon's orbital eccentricity