Answer:
A) t = 0.55 s
B) x = 24.8 m
Explanation:
A) We can find the time at which the ball will be in the air using the following equation:
Where:
is the final height= 0
is the initial height= 1.5 m
is the component of the initial speed in the vertical direction = 0 m/s
t: is the time =?
g: is the gravity = 9.81 m/s²

By solving the above equation for t we have:
Hence, the ball will stay 0.55 seconds in the air.
B) We can find the distance traveled by the ball as follows:

Where:
a: is the acceleration in the horizontal direction = 0
is the final position =?
is the initial position = 0
is the component of the initial speed in the horizontal direction = 45 m/s


Therefore, the ball will travel 24.8 meters.
I hope it helps you!
Answer: Distance is a scalar quantity and direction is not applicable. We can use graphs to depict an object's change in position over time. Create a large number line in the classroom by taping index cards on the floor or wall 1 meter apart.
Explanation: I really hope that was helpful.
Answer:
121550 J
Explanation:
Parameters given:
Mass, m = 0.34kg
Specific heat capacity, c = 14300 J/kgK
Change in temperature, ΔT = 25K
Heat gained/lost by an object is given as:
Q = mcΔT
Since ΔT is positive in this case and also because we're told that heat was transferred to the hydrogen sample, the hydrogen sample gained heat. Therefore, Q:
Q = 0.34 * 14300 * 25
Q = 121550J or 121.55 kJ
Answer:
lowest level contains more energy
Explanation:
The source on the nagnetic field on the ssun is the moons pull