We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer:
F(Mars) = 2 G m M / (4 R)^2 force of Sun on Mars
F(Merc) = G m M / R^2 force of force of Sun on Mercury
R = distance of Sun from Mercury, m = mass of Mercury
F(Merc) / F(Mars) = 4^2 / 2 = 8
First, you find the velocity at each component. The general equation is:
a = (v2 - v1)/t
a,x = (v2,x - v1,x)/t
-0.105 = (v2,x - 8.57)/6.67
v2,x = 7.87 m/s
a,y = (v2,y - v1,y)/t
0.101 = (v2,y - -2.61)/6.67
v2,y = -1.94 m/s
To find the final speed, find the resultant velocity by taking the hypotenuse.
v^2 = (v2,x)^2 + (v2,y)^2
v^2 = (7.87)^2 + (-1.94)^2
v = 8.1 m/s