Answer:
Required energy Q = 231 J
Explanation:
Given:
Specific heat of copper C = 0.385 J/g°C
Mass m = 20 g
ΔT = (50 - 20)°C = 30 °C
Find:
Required energy
Computation:
Q = mCΔT
Q = 20(0.385)(30)
Required energy Q = 231 J
The work is path independent since we have a conservative force.
Thus
Answer (1)
Answer:
(I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Explanation:
Given that,
Length of copper wire = 1.70 m
Diameter = 0.700 mm
Length of carbon piece = 20.0 cm
Cross section area
(I). We need to calculate the area of copper wire
Using formula of area


We need to calculate the resistance
Using formula of resistance

Put the value into the formula


(II). We need to calculate the resistance
Using formula of resistance

Put the value into the formula


Hence, (I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Answer:
Time period between the successive beats will be 0.1703 sec
Explanation:
We have given speed of the sound v = 349 m/sec
Wavelength of piano 
Wavelength of piano 
So frequency of piano A 
Frequency of piano B 
So beat frequency f = 455.61 - 449.74 = 5.87 Hz
So time period 
So time period between the successive beats will be 0.1703 sec