Since it moves 5 m/s faster every second, after 20 seconds it's moving 100 m/s faster than when it started speeding up.
If it was moving at 14 m/s when the acceleration began, it's moving at 114 m/s at the end of the 20 seconds. Its velocity is <em>114 m/s North.</em>
That's 255 mph !
Answer:
yo they deleted my answer. The answer is 0N
Explanation:
so when two forces pull on an object from opposite sides with the same force (in this case its 20N), then the object is in equilibrium at 0N.
So its clear that there is one person on the the opposite side.
SOOO generally<u>: (left or down) would be considered </u><u>negative</u><u> in an equation. And the other person (right or up) would be considered </u><u>positive</u><u>.</u> So if both forces are the same numbers on opposite sides then the answer is 0 (if you add both of them).
<em>0 is the number of equilibrium.</em>
OK, so the equation would be -20N + 20N and then badda bing badda boom viola, the answer: 0N
thanks for coming to my TED talk. I hope they don't delete this answer.
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>