1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
3 years ago
5

On a clear day at a certain location, a 119-V/m vertical electric field exists near the Earth's surface. At the same place, the

Earth's magnetic field has a magnitude of 5.050 10-5 T.
(a) Compute the energy density of the electric field. nJ/m3
(b) Compute the energy density of the magnetic field. µJ/m3
Physics
1 answer:
IrinaVladis [17]3 years ago
8 0

Answer:

(a) 62.69 nJ/m^3

(b) 1015.22 μJ/m^3

Explanation:

Electric field, E = 119 V/m

Magnetic field, B = 5.050 x 10^-5 T

(a) Energy density of electric field = \frac{1}{2}\varepsilon _{0}E^{2}

          =\frac{1}{2}\times 8.854\times 10^{-12}\times 119\times 119

          = 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3

(b) energy density of magnetic field = \frac{B^{2}}{2\mu _{0}}

=\frac{\left ( 5.05\times 10^{-5} \right )^{2}}{2\times 4\times 3.14\times 10^{-7}}

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3

You might be interested in
what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame
Hitman42 [59]

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

5 0
2 years ago
How to find acceleration?
Yanka [14]
Acceleration = Change in Velocity / time
 
                a  =  (v - u) / t

Where v = final velocity in m/s              
            u = initial velocity in m/s 
            t = time in seconds.
            a = acceleration in m/s²

A proper record of the changes in velocity with the corresponding time would help find the acceleration.  
4 0
3 years ago
Read 2 more answers
At a given instant an object has an angular velocity. It also has an angular acceleration due to torques that are present. There
katen-ka-za [31]

a) Constant

b) Constant

Explanation:

a)

We can answer this question by using the equivalent of Newton's second law of motion of rotational motion, which can be written as:

\tau_{net} = I \alpha (1)

where

\tau_{net} is the net torque acting on the object in rotation

I is the moment of inertia of the object

\alpha is the angular acceleration

The angular acceleration is the rate of change of the angular velocity, so it can be written as

\alpha = \frac{\Delta \omega}{\Delta t}

where

\Delta \omega is the change in angular velocity

\Delta t is the time interval

So we can rewrite eq.(1) as

\tau_{net}=I\frac{\Delta \omega}{\Delta t}

In this problem, we are told that at a given instant, the object has an angular acceleration due to the presence of torques, so there is a non-zero change in angular velocity.

Then, additional torques are applied, so that the net torque suddenly equal to zero, so:

\tau_{net}=0

From the previous equation, this implies that

\Delta \omega =0

Which means that the angular velocity at that instant does not change anymore.

b)

In this second case instead, all the torques are suddenly removed.

This also means that the net torque becomes zero as well:

\tau_{net}=0

Therefore, this means that

\Delta \omega =0

So also in this case, there is no change in angular velocity: this means that the angular velocity of the object will remain constant.

So cases (a) and (b) are basically the same situation, as the net torque is zero in both cases, so the object acts in the same way.

8 0
3 years ago
While standing atop a building 49.6 m tall, you spot a friend standing on a street corner. Using a protractor and a dangling plu
olga nikolaevna [1]

Answer:

75degree don't forget wind and gravity force pulling down

6 0
3 years ago
To which group/family does each of these belong? A. Sulfur _________ B. Sodium _________ C. Argon _________ D. Silicon _________
ArbitrLikvidat [17]

Answer:

A. Sulfur _________ group 16 chalcogens

B. Sodium _________ group 1 alkali metals

C. Argon _________ group 18 noble gases

D. Silicon _________ group 14 carbon family

E. Chlorine _________ group 17 halogens

F. Phosphorus_________ group 15 pnicogens

7 0
2 years ago
Other questions:
  • Be sure to answer all parts. Calculate the mass of each of the following: (a) a sphere of gold with a radius of 12.5 cm. (The vo
    8·1 answer
  • How is coal formed? from hydrothermal deposits from igneous intrusions from 300 to 400 million year old plant remains from oil d
    15·1 answer
  • An 8 kg mass moving at 8 m/s collides with a 6 kg mass
    15·1 answer
  • Who is the silentest that revised the atomic modle
    5·1 answer
  • Which three characteristics of an object are represented by a motion map
    8·1 answer
  • In Eric's planning to take photos of the Plato Crater, Copernicus Crater and Rupes Cauchy Crater, he is trying to
    8·1 answer
  • What causes waves to slow down: change in wave’s wavelength or change in its frequency and y?
    10·1 answer
  • 1. Consider the position vs time graph at right.
    6·1 answer
  • What was the first and largest asteroid to be identified?.
    11·1 answer
  • What is the kinetic energy of a 3000kg object moving at a velocity of 300m/s?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!